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ABSTRACT

Motivation: Periodic processes play fundamental roles in organ-

isms. Prominent examples are the cell cycle and the circadian clock.

Microarray array technology has enabled us to screen complete sets

of transcripts for possible association with such fundamental

periodic processes on a system-wide level. Frequently, quite large

numbers of genes have been detected as periodically expressed.

However, the small overlap between genes identified in different

studies has cast some doubts on the reliability of the periodic

expression detected.

Results: In this study, comparative analysis suggests that the

lacking agreement between different cell-cycle studies might be due

to inadequate background models for the determination of sig-

nificance. We demonstrate that the choice of background model

has considerable impact on the statistical significance of periodic

expression. For illustration, we reanalyzed two microarray studies of

the yeast cell cycle. Our evaluation strongly indicates that the results

of previous analyses might have been overoptimistic and that the

use of more suitable background model promises to give more

realistic results.

Availability: R scripts are available on request from the correspond-

ing author.

Contact: matthias.futschik@charite.de

Supplementary information: Supplementary materials are available

at Bioinformatics online.

1 INTRODUCTION

Periodicity is an important phenomenon in molecular biology

and physiology. Many fundamental processes follow periodic

patterns of activation. One intensely studied periodic process

is the cell cycle. In all organisms, it underlies growth and

reproduction, the distinct features of life. On the microscopic

level, this comprises the replication of DNA and the division of

cells into daughter cells equipped with the structure necessary

for correct functioning. Although the core machinery of the cell

cycle is well studied, the effects on the whole system have been

less well defined.
Microarray technologies have enabled us to measure

genome-wide changes in expression, thus, permitting a

system-wide assessment of periodic patterns. Microarray

studies of the cell cycle in different organisms have indicated

that periodic expression may not be restricted to a small

number of genes, but that a substantial part of the transcrip-

tome undergoes periodic activation during the cell cycle (Cho

et al., 1998; Spellman et al., 1998). However, it should be noted

that microarrays have their limitations: The produced data are

frequently compromised by a high inherent level of noise as well

as by various experimental biases (Futschik and Crompton,

2004). Furthermore, special caution in the interpretation of

microarray data has to be taken, since the large amount

of generated data leads to the emergence of many kinds of

patterns merely due to chance (Ambroise and McLachlan,

2002). This increases the risk of detecting patterns that satisfy

the assumptions of researchers but which may have arisen at

random. A prominent example of this ‘self-fulfilling prophecy’

might be the study of the human cell cycle by Cho and

co-workers (Cho et al., 2001). The authors detected several

known and many apparently novel cell-cycle-regulated genes.

However, Shedden and Cooper (2002a) could convincingly

demonstrate in a follow-up analysis that most of these detected

genes do not show a reproducible periodic pattern.

Thus, stringent statistical methods are essential to assure the

reliability of the periodic expression detected. Several

approaches for detection have been proposed based on time-

series analysis and statistical modeling (Johansson et al., 2003;

Spellman et al., 1998; Wichert et al., 2004; Zhao et al., 2001).

[For a recent comparison of their performance, please refer to

the study by de Lichtenberg and collegues (2005).] To assess the

significance of the identified periodic expression, most of the

proposed methods rely on data normality or the extensive use

of permutation tests. However, this neglects the fact that time-

series data exhibit generally a considerable autocorrelation

i.e. correlation between successive measurements. Therefore,

neither the assumptions of data normality nor for randomiza-

tions may hold.

We show in this study that this failure can substantially

interfere with the significance testing, and that neglecting

autocorrelation can potentially lead to a considerable over-

estimation of the number of periodically expressed genes. For

illustration, we re-examined two microarray studies of the yeast

cell cycle which have been intensively analyzed by various

methods. While these methods usually detected a large number

of periodically expressed genes (ranging from about 300 to

800), there was remarkably little agreement in the set of genes

identified in different experiments (de Lichtenberg et al., 2005;*To whom correspondence should be addressed.
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Shedden and Cooper, 2002a; Zhao et al., 2001). Our study

suggests that one reason for the observed lack in agreement

could be an overestimation of the number of periodically

expressed genes due to the use of inadequate background

models.

2 METHODS

2.1 Expression studies of the yeast cell cycle

As case studies we re-analyze two yeast cell-cycle microarray experi-

ments. The first study included the expression of over 6000 genes

derived by employing Affymetrix chips (Cho et al., 1998).

Synchronization was achieved using temperature sensitive yeast cells

(CDC28). Samples of cells were taken every 10min for 160min. This

period of time included two cell cycles. By visual inspection of

expression patterns, Cho et al. found over 400 genes showing

periodicity.

We excluded genes if more than 25% of the expression measurements

during the time course were missing. Affymetrix signals were converted

into ratios by dividing the expression of genes by the average value.

After log2-transformation, missing values were replaced by estimates

derived by the knn-method (Troyanskaya et al., 2001). Data were

standardized to have mean values equal to zero and SD equal to one

for subsequent time-series analysis. Optionally, additional scaling

by quantile normalization was performed (Bolstad et al., 2003). The

distributions of expressions values for the datasets before and after

scaling are shown in Figure S6.

As second dataset, we use the microarray experiments of the yeast

cell cycle by Spellman and colleagues (1998). Synchronization of the

cell cultures was similarly achieved as in the experiment by Cho et al.,

but using the mutant CDC15 strain. Sampling was performed

over almost three cell cycles (290min). Transcript levels were measured

using two-color cDNA arrays including over 6000 genes. For reference

RNA, cells were grown without synchronization. Using Fourier

analysis and additional experiments, Spellman and colleagues (1998)

found 800 cell-cycle-regulated yeast genes. Except for the conversion

in ratios, we performed the same pre-processing as for the dataset by

Cho et al.

2.2 Detection of periodic signals in microarray data

The described microarray experiments deliver time-series data i.e. gene-

expression values in a well-defined order. To detect periodic signals

within the large datasets, several different approaches have been put

forward ranging from simple visual inspection (Cho et al., 1998) to

elaborated statistical models (Lu et al., 2004). Recently, an extensive

comparison showed that a relatively simple permutation-based method

using Fourier analysis performs better than other approaches. It is

based on the Fourier score defined as

F ½g� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i cosð2�tiÞ

T
� gi

� �2

þ

P
i sinð2�tiÞ

T
� gi

� �2
s

ð1Þ

where g is the vector of standardized expressions gi (mean(g)¼ 0;

sd(g)¼ 1), T is the period of the cell cycle and gi is the expression

measured at time ti. The closer a gene’s expression follows a (possibly

shifted) cosine curve of period T, the larger is the score F. To identify

periodicity, Fourier scores were calculated for the temporal expression

of each gene. For the cell-cycle period, the values were taken from the

original publications, i.e. T¼ 85min for CDC28 and T¼ 115min for

CDC15 (Spellman et al., 1998).

2.3 Background models for time-series data

Microarray data comprise the measurements of transcript levels

for many thousands of genes. Due to the large number of genes, it

can be expected that some genes show periodicity simply by chance.

To assess therefore the significance of periodic signals, it is necessary

first to define what distribution of signals can be expected if the

studied process exhibits no true periodicity. In statistical terms this

is equivalent with the definition of a null hypothesis of non-periodic

expression. The most simple model for non-periodic expression is

based on randomization of the observed times series. A background

distribution can then be constructed by (repeated) random permu-

tation of the sequentially ordered measurements in the experiment.

Alternatively, non-periodic expression can be derived using a

statistical model. A conventional approach is based on the assumption

of data normality. In case that the time-series data has been

standardized (�¼ 1), a background distribution can be readily

generated.

In time-series analysis, an important class of stochastic processes is

the autoregressive processes for which the value of the time-dependent

variable Xt depends on past values of X up to a normally distributed

random variable Z. Of special interest here are autoregressive processes

of order (AR(1)):

Xt ¼ �1�Xt�1 þ Zt ð2Þ

for which �1 is equal to the correlation coefficient of Xt and Xt�1

(i.e. the autocorrelation of Xt with a time lag of one) and Zt is an

independent random with a mean value of zero and variance �2
z . In our

case, Xt denotes the expression of a gene at time t. The value of �1 and

�2
z can be estimated for each gene separately using maximum likelihood

estimation (see Supplementary Materials). Thus, we can approximate

the observed time series Xt as AR(1) process. It is important to note in

this context, that AR(1) processes cannot capture periodic patterns

except for alternations with period two. Since Zt is a random variable,

we can readily generate a collection of time series with the same

autocorrelation as in the original dataset. Therefore, although

AR(1) processes constitute random processes, they allow us to

construct a background distribution that captures the autocorrelation

structure of original gene-expression time series without fitting the

potentially included periodic patterns. An illustration of the different

background models can be found in the Supplementary Materials

(Fig. S1–S3).

An important (and in this context crucial) characteristic of time series

is their power spectrum. The power spectrum (or spectral density

distribution) I represents the strength of periodic components in a

signal with respect to their frequency. It can be calculated for a time

series of length N using Fourier analysis:

I ½ fp� ¼

P
i cosð2�fptiÞgi

� �2
þ

P
i sinð2�fptiÞgi

� �2h i
N�

ð3Þ

The frequencies are fp¼ p/N with integer p ranging from 1 to N/2.

Note that the Fourier score defined in Equation (1) is equal the square

root of the spectral density at the cell-cycle frequency (up to a

normalization constant).

Figure 1 shows the power spectra for an uncorrelated random and

an AR(1) process. The spectrum for an uncorrelated random process

(which is assumed for the randomized and Gaussian background

model) is constant over the frequency range. This is in remarkable

contrast to the spectrum obtained for an AR(1) process with

autocorrelation of 0.5 which shows larger power at lower frequencies

(Fig. 1B). It should be noted, however, that the spectrum of

AR(1) processes depends on the underlying autocorrelation coefficient

with negative autocorrelation yielding to larger power at higher

frequencies.
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2.4 Significance of periodic signals

To assess the significance of the Fourier score obtained for the original

gene-expression time series, the probability has to be calculated of how

often such a score would be observed by chance based on the chosen

background distribution. Since multiple testing is involved, we used the

false discovery rate (FDR) to represent the statistical significance. It is

defined here as the expected proportion of false positives among all

genes detected as periodically expressed. Thus, we can calculate the

empirical false discovery rate for a chosen threshold c for the Fourier

score:

FDRðcÞ ¼

Pn
j¼1

PN
i¼1 �ðF

b
ij � cÞ=nPN

i¼1 �ðF
o
i � cÞ

ð4Þ

where F o
i is the Fourier score derived for the ith gene for the original

observation, F b
ij is the Fourier scores for the ith gene in the j th

independent generation of background series, N is the total number of

genes, n is the total number of generated background series for each

gene and �(x)¼ 1 for x� 0, respectively, �(x)¼ 0 for x50. Thus,

the significance of the measured periodicities can be obtained by

comparison with the generated background distribution.

3 RESULTS

To study the influence of background models on the detection

of periodic patterns, we re-analyzed two yeast cell-cycle

microarray experiments. After preprocessing of the two

datasets (CDC15 and CDC28) we generated background

distributions on following procedures: (i) Randomized back-

ground distributions were produced by repeated random

permutation of the observed time series for every gene;

(ii) Gaussian background distributions were derived from

sampling of the normal distribution and (iii) AR(1)-based

background distributions were constructed by fitting the

original data to AR(1) processes and subsequent genera-

tion of random time-series based on the obtained fitting

parameters.

3.1 Autocorrelation in cell-cycle datasets

Significance of periodicity in microarray data is often assessed

by comparison of the observed data with background distrib-

utions. Most approaches so far use randomized data or assume

data normality to construct background distributions
(Spellman et al., 1998; Wichert et al., 2004). Their usage

implies that no correlation occurs between successive measure-

ments within the time series for non-periodic genes. However,

many time series in nature exhibit autocorrelation. A first
indication that this is also true for the yeast cell-cycle datasets is

given by cluster analysis. Besides clusters showing periodic

patterns, many other expression profiles occur (Fig. 2). The

displayed prominent non-periodic trends might have been
caused by the applied synchronization procedure inducing

initial stress responses and slowly decaying perturbations. Such

trends are also biologically meaningful as transcript levels

within a cell at a certain time are at least partially determined
by their levels in the past. However, as these trends may arise by

chance, a more stringent assessment of the data structure is

needed. Therefore, we calculated the gene-wise correlation

matrix between all measurements (i.e. arrays). For both
datasets, considerable autocorrelation was detected (Fig. 3A).

Directly successive measurements generally showed a clear

correlation (e.g. Pearson correlation of 0.29� 0.17 for CDC28).

Note, that this the pattern remains prominent even after
exclusion of highly periodic genes (Fig. S7). Temporally more

distant measurements seemed to be anti-autocorrelated sup-

porting the existence of long-term trends as indicated by cluster

analysis. In summary, both time series exhibit clear
autocorrelation.

This was contrasted by the correlation matrix that we

calculated for randomized and Gaussian background distribu-
tions (Fig. 3B and C). For these generated datasets, the

autocorrelation generally was negligible. For example, a

Pearson correlation between directly successive arrays of

Fig. 1. Spectral density distributions for uncorrelated random and AR(1) processes. The distributions were calculated based on 10 000 independent

simulations of time series with length 20. They closely follow the analytical expressions for power spectra that can be derived for processes of infinite

length: I( f )¼ �2
x /� for Gaussian and I( f )¼ �2

x(1� �2)/(� (1� 2��cos!þ�2)) for AR(1) processes. (Chatfield, 1995). The frequency was scaled so that

the maximum detectable frequency (i.e. Nyquist frequency) is equal to �. Solid lines represent the mean spectral density; dashed lines represent the

mean plus the SD; and dotted lines indicate the upper 90% level of the distributions. Vertical dashed lines indicate the cell-cycle frequency of the two

analyzed yeast strains. For the AR(1) process, an autocorrelation coefficient of 0.5 was chosen.
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�0.06� 0.02 and of 0.001� 0.02 was calculated for randomized

(permutated) and Gaussian background distributions, respec-

tively. For AR(1)-based background distributions, however, we

obtained clear correlation patterns (Fig. 3D). Similarly to the

original data, directly successive measurements were signifi-

cantly correlated (0.39� 0.07). Note that the anti-correlation

detected in the original dataset between distant measurements is

not reflected. This is not surprising as we have restricted the

order of the autoregressive process to one to avoid interference

with the detection of periodicity. Nevertheless, the comparison

shows that the AR(1)-based background reflects the important

feature of autocorrelation as observed in the original datasets.

This is also supported by a comparison of the distributions of

autocorrelation coefficients � for the different background

models (Fig. S5). Thus, the AR(1) model can provide a more

accurate background model for significance testing.

3.2 Impact of background models on significance testing

To examine the impact of background models on significance

testing, we generated 100 independent distributions for each

type of background model for the two original datasets. These

independently generated distributions were subsequently

merged for each background model and used for the calculation

of the Fourier score. Examples of time series generated by

different background models are shown in Fig. S1–3.

Figure 4 displays the distributions of Fourier scores obtained

for the original datasets and the corresponding background

models. Randomized and Gaussian background led to very

similar distributions of Fourier scores. Notably, the proportion

of expression vectors with large scores (signifying strong

periodicity) is considerably smaller than for the original

datasets. In contrast, the AR(1)-based background model

yielded a larger number of high-scoring expression vectors.

Remarkably, it leads to a similar distribution for the high-

scoring range as the original CDC28 dataset.
What is the underlying cause for such differences between the

background models? As Figure 1 shows, AR(1) processes can

lead to a higher spectral density, and thus larger Fourier scores,

for the observed cell-cycle frequencies compared to random

uncorrelated processes. However, this increase depends

strongly on the value of the autocorrelation coefficient �.
Calculations of the power spectrum for different � show that

only positive autocorrelation below a certain threshold can

cause larger higher spectral densities. More specifically, higher

spectral densities are achieved by values for � either between 0

and 0.75 for the CDC28 experiment or between 0 and 0.85 for

CDC15, respectively (Fig. S4A). Remarkably, this is also the

range where we observe a prominent enrichment of auto-

correlation coefficients for the datasets (Fig. S4B). Therefore,

we can conclude that the autocorrelation in the analyzed

datasets can lead to spurious periodicities.

Fig. 3. Autocorrelation in original dataset and background distributions: The upper triangle of the correlation matrix is displayed with respect to

the temporal ordering of arrays. The color-bar shows the color-coding of the observed correlation. The original dataset CDC28 was standardized

and scaled.

Fig. 2. Examples of periodic (left) and aperiodic (middle, right) expression patterns in the CDC28 dataset. The clusters were detected by a soft-

clustering approach which allows differentiation of cluster membership. The membership values are color-encoded according to the color-bar on the

far right site. Details of the applied clustering method can be found in Futschik and Carlisle (2005).
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To evaluate quantitatively the obtained Fourier scores, we

assessed the significance based on the empirical FDR. By

shifting a threshold for the Fourier score and using Equation

(4), the number of significant genes for different FDR can be

obtained. The dependency is visualized in Figure 5. The

influence of the choice of background model is striking:

Whereas the randomized and Gaussian backgrounds result in

very similar numbers of significant genes, using the AR(1)

background leads to a considerable reduction of the number of

significant genes independent of the chosen FDR. Note that

this is especially the case for the CDC28 dataset. The exact

numbers of significant genes can be found in Table 1. For a less

stringent FDR of 0.1, we obtain for both datasets about

500–600 significant genes in the case of randomized or

Gaussian background distribution. For FDR¼ 0.01, 150–250

genes remained significant. Choosing the AR(1) background,

we obtain considerably lower numbers. For the CDC15 dataset,

the number of significant genes was reduced by up to 50%.

Even more drastic was the reduction for the CDC28 dataset.

For a FDR¼ 0.01, only three genes were identified as

significantly periodically expressed. Choosing FDR¼ 0.1

leads to 126 significant genes. The difference between the two

datasets might arise from the fact that the CDC15 spans three

cell cycles and thus periodic expression may be easier to detect

in contrast to the CDC28 with only two cell cycles monitored.

Notably, adjusting the threshold also increases the overlap of

significant genes between the two datasets based on the AR(1)

background model.

Besides the strong influence of the choice of background

model, we also noted the importance of data preprocessing for

the significance of periodicity. Scaling to the same distribution

generally results in an increase of periodically expressed genes

detected. For CDC15, an increase of up to 20% was observed,

whereas for CDC28 this effect strongly depended on the

significance level and the chosen background model.

3.3 Assessment of detected significance

Our comparison indicated so far that the AR(1)-based back-

ground most adequately represents the data structure in the

Fig. 5. FDR for periodic expression. The dependency between number of significantly periodically expressed genes and the significance level is shown

for different background models. Lowering the threshold for the Fourier score leads to an increase of the number of significant genes but also to

larger FDRs.

Fig. 4. The distribution of Fourier scores for the original datasets and the different background datasets are shown. Dashed lines indicate the

threshold for FDR¼ 0.1 as determined in section 2.4.
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yeast cell-cycle experiments. But do we improve the quality of

the detection of periodicity? To asses this issue, we compared
the sets of significant genes found using different background

models with three previously compiled benchmark datasets of

cell-cycle genes (de Lichtenberg et al., 2005): (i) The first
benchmark set comprises a total of 113 genes identified as

periodically expressed in small scale experiments; (ii) the second

set consists of 352 genes which underlie the control of known

cell-cycle transcription factors and (iii) the third set comprises
518 genes annotated in the Munich Information Center for

Protein Sequences (MIPS) database as ‘cell cycle and DNA

processing’ after the exclusion of genes included in the two
other benchmark sets. The quality of identification of

periodically expressed genes was assessed using the positive

predictive value (PPV), since this measure tends to be more
informative when the prior probability of finding a positive is

low (Jansen and Gerstein, 2004). It can be defined as

PPV¼TP/(TPþFP), where TP is the number of true positives
and FP is the number of false positives. The PPVs were

calculated for several FDRs and shown in Table 2.
For the first benchmark set, a clear improvement was

achieved for both the CDC15 and CDC28 datasets when

using the AR(1)-based background model. For the second set,
the PPV increased strongly for the CDC28 dataset and only

slightly for the CDC15 dataset. The comparison is less

conclusive for the MIPS benchmark set. It should be noted,
however, that the MIPS dataset is expected to include a lower

proportion of periodically expressed genes, since cell-cycle

genes of the other benchmark sets were excluded from the

MIPS dataset (de Lichtenberg et al. 2005). In summary, the use
of AR(1)-background models improved the PPV in most cases.

It also indicates that we might overestimate the number of

periodically expressed genes using randomized or Gaussian
background models.

4 DISCUSSION AND CONCLUSIONS

In this study, we examined the impact of the choice of

background model on the detection of periodically expressed

genes in microarray data. These background models manifest

what we would expect the data to ‘look like’ if no true

periodic processes underlie the observed expression patterns.

Frequently, randomized or Gaussian background models are

used, assuming that non-periodic genes display no autocorrela-

tion. However, whether such an assumption holds has not been

examined so far in the literature. Thus, we scrutinized different

background models and their implications using two yeast cell-

cycle microarray datasets as case studies. We assessed the data

structure of the cell-cycle experiments by means of autocorrela-

tion which is an important tool to describe the evolution of a

process through time. Our analysis shows that randomized and

Gaussian background models neglect the dependency structure

within the observed data. In contrast, the use of AR(1)-based

background models gave a more accurate representation of

correlations between measurements.

Table 1. Number of genes detected as significantly periodically expressed

Background model CDC15 CDC28 Overlap FDR

Standardized Standardized & scaled Standardized Standardized & scaled

Randomized 258 302 192 201 0.34 0.01

Gauss 257 307 152 215 0.33

AR(1) 119 129 3 14 0.21

Randomized 420 497 448 454 0.36 0.05

Gauss 413 488 419 445 0.36

AR(1) 257 280 52 106 0.39

Randomized 551 672 649 685 0.35 0.10

Gauss 527 649 614 671 0.35

AR(1) 326 383 126 200 0.40

‘Standardized’ refers to standardization of gene expression values (mean¼ 0, SD¼ 1). ‘Scaled’ refers to the scaling of the dataset to the same distribution. The significance

is shown as empirical FDR as described in Methods and Materials. The overlap is defined here as the percentage of significant genes found in CDC28 that are also

determined as significant for CDC15.

Table 2. Positive predictive value (PPV) derived for the use of different

background models for significance testing

Benchmark set CDC15 CDC28 FDR

Randomized AR(1) Randomized AR(1)

Small scale exp. 0.21 0.31 0.19 0.66 0.01

Chromatin IP 0.17 0.18 0.18 0.33

MIPS 0.10 0.06 0.20 –

Small scale exp. 0.15 0.23 0.11 0.32 0.05

Chromatin IP 0.16 0.17 0.12 0.19

MIPS 0.11 0.10 0.18 0.19

Small scale exp. 0.13 0.18 0.09 0.21 0.10

Chromatin IP 0.14 0.18 0.10 0.19

MIPS 0.10 0.11 0.16 0.25

PPVs based on Gaussian backgrounds were similar to the ones based on

randomized background (data not shown). Details regarding the benchmark sets

are given in the text. No true positives were detected using the AR(1) background

model for the MIPS benchmark set at a FDR of 0.01.
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The observed residual (non-cell-cycle dependent) correlation
could have several sources. One likely source is the applied
synchronization method which is based on shifting the cell
cultures from a permissive to a non-permissive temperature

range. The induced stress responses can evoke the up-regulation
of a variety of genes such as heat shock proteins. These initial
conditions might then lead to slowly decaying perturbations—

which are manifested as autocorrelative patterns in the
measured gene expression.
We also demonstrated that the choice of background model

has drastic effects on the number of genes detected as signifi-
cantly periodically expressed. Randomized and Gaussian
background models led to around 600–700 genes being deter-

mined to be significantly periodically expressed (FDR¼ 0.1).
Using an AR(1)-based background, however, we detected
around 400 genes for the CDC15 and around 200 for CDC28
as significant. A subsequent assessment using benchmark

datasets indicated that the use of randomized or Gaussian
background models can lead to overestimating the number of
periodic genes.

Although the choice of the background model has generally
been given less consideration than the selection of the detection
methods, our results demonstrate that it is of major impor-

tance. Randomized and Gaussian background models may
overestimate number of significant periodically expressed
genes. In contrast, the use of the more accurate AR(1)-
background led to a considerable reduction of the number.

That does not mean that only a small number of genes is
periodically expressed but rather it reflects the inherent noise in
microarray data and may give a more realistic picture of

current capacities for the detection of cell-cycling genes.
Finally, we would like to note that this presented framework

is not restricted to the study of the cell cycle, but should apply

generally to the detection of periodic signals in high-throughput
data. A further prominent example is the detection of circadian
expression using microarray technology (Bozek et al., 2007;

Storch et al., 2002). As—similar to the presented cell-cycle
studies—a strikingly poor overlap between different microarray
experiments was observed (Bozek et al., 2007), we are currently
investigating the impact of background models on the detection

of genes controlled by the circadian clock.
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